首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   310篇
  国内免费   58篇
化学   83篇
晶体学   11篇
力学   142篇
综合类   10篇
数学   238篇
物理学   1006篇
  2023年   5篇
  2022年   15篇
  2021年   24篇
  2020年   25篇
  2019年   32篇
  2018年   36篇
  2017年   43篇
  2016年   62篇
  2015年   53篇
  2014年   70篇
  2013年   79篇
  2012年   70篇
  2011年   91篇
  2010年   59篇
  2009年   75篇
  2008年   61篇
  2007年   87篇
  2006年   74篇
  2005年   59篇
  2004年   58篇
  2003年   51篇
  2002年   65篇
  2001年   57篇
  2000年   41篇
  1999年   43篇
  1998年   39篇
  1997年   22篇
  1996年   23篇
  1995年   16篇
  1994年   7篇
  1993年   11篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   4篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有1490条查询结果,搜索用时 140 毫秒
1.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   
2.
In this study, we investigate the modulation of energy band in 3D self-assembled nanomembranes containing GaAs/Al0.26Ga0.74As quantum wells (QWs). Photoluminescence (PL) characterizations demonstrate that the self-assembled structures have different optical transition properties and the modulation of the energy band is thus realized. Detailed spectral analyses disclose that the small strain change in structures with different curvatures cannot cause remarkable change in energy bands in Al0.26Ga0.74As layer. On the other hand, the optical transitions of GaAs QW layer is influenced by the strain evolution in term of light emission intensity. We also find the first order Stark effect in rolled-up nanomembrane with diameter of 150 μm, which is closely connected with the coupling effect between the deformation potential and the piezoelectric potential. Our work may pave a way for the fabrication of high performance rolled-QW infrared photo-detectors.  相似文献   
3.
In this paper, we study the following Klein–Gordon–Maxwell system Δu+(λa(x)+1)u(2ω+ϕ)ϕu=f(x,u),inR3,Δϕ=(ω+ϕ)u2,inR3.Using variational methods, we obtain the existence of ground state solutions under some appropriate assumptions on a and f.  相似文献   
4.
Experiments were carried out to observe the effect of a magnetic field and grid biasing voltage in presence of a plasma bubble in a magnetized, filamentary discharge plasma system. A spherical mesh grid of 80% optical transparency was negatively biased and introduced into the plasma for creating a plasma bubble. Diagnostics via an electrical Langmuir probe and a hot emissive probe were extensively used for scanning the plasma bubble. Plasma floating potential fluctuations were measured at three different positions of the plasma bubble. The instability in the pattern showed the dynamic transition from periodic to chaotic for increasing magnetic fields. Time scale analysis using continuous wavelet transform was carried out to identify the presence of non‐linearity from the contour plots. The mechanisms of the low‐frequency instabilities along with the transition to chaos could be qualitatively explained. Non‐linear techniques such as fast Fourier transform, phase space plot, and recurrence plot were used to explore the dynamics of the system appearing during plasma fluctuations. In order to demonstrate the observed chaotic phenomena in this study, characteristics of chaos such as the Lyapunov exponent were obtained from experimental time series data. The experimentally observed potential structure is confirmed with numerical analysis based on fluid hydrodynamics.  相似文献   
5.
《Physics letters. A》2020,384(26):126662
We study the dynamic of magneto-polaron condensate in monolayer two dimensional (2D) transition metal dichalcogenides (TMDs) materials of 2H types in triangular quantum well potential. Within both the quantum mechanical Schrödinger approach (QMSA) and the improved Wigner-Brillouin theory (IWBT), Landau energies levels (LELs) are derived. We have shown that the magneto-polaron condensation is enhanced in monolayer MoSe2 compared to MoS2, WS2 and WSe2. We derive various levels by increasing a magnetic field and laser parameter. We show that the quantum confinement lifts the degeneracy of the Landau levels (LLs) resulting in an anticrossing and crossing. The dephasing effect due to the quantum well potential's parameter plays an important role in the magneto-polaron energy corrections, which are also affected by the amplitude of the laser field. The system presents Stückelberg oscillations which is important for practical applications.  相似文献   
6.
7.
以建立高效的动态分析方法为出发点,以边单元作为求解点,改进传统的格林元方法,减少未知数和求解矩阵维度;并提出基于改进格林元的加密网格加密方法,保证考虑复杂裂缝网络的压裂水平井动态模拟的早期精度.退化模型与半解析解、数值模拟结果进行对比,验证本文基于加密网格的改进格林元方法的准确性和动态分析的高效性.最后进行动态响应的敏感性分析,结果表明:①格林元方法是一种高精度的动态模拟方法,将求解节点设置在网格的边上可以提高压裂水平井动态模拟的速度;②改进格林元方法的加密基于叠加原理,不需要通过插值近似,其求解精度高.在相同加密网格条件下,基于本文改进格林元方法的加密效果比有限差分加密效果更佳;③复杂裂缝导流能力、改造区渗透率提高倍数、改造区大小等参数对压裂水平井动态特征影响较大,在动态分析和参数反演时,应着重考虑这些因素的影响.  相似文献   
8.
The author deals with a semi-linear edge-degenerate parabolic equation, and proves that the solution increases exponentially under the initial energy J(u_0) ≤ d, where d is the mountain-pass level. Moreover, the author estimates the blow-up time and the blow-up rate for the solution under J(u_0) 0.  相似文献   
9.
ABSTRACT

We study the effect of the external electric field Fext on the low-temperature electron mobility μ in an asymmetrically doped AlxGa1-xAs based V-shaped double quantum well (VDQW) structure. We show that nonlinearity of µ occurs under double subband occupancy on account of intersubband effects. The field Fext alters the VDQW potential leading to transfer of subband wave functions between the wells, which affects the scattering potentials and hence μ. In the VDQW structure, due to the alloy channel layer, the alloy disorder (Al-) scattering happens to be significant along with the ionised impurity (Imp-) scattering. The non-linear behaviour of μ is because of μImp, while the overall magnitude of μ is mostly due to μAl. The increase of difference in the doping concentrations of the outer barriers increases the nonlinearity of μ. The oscillatory character of μ is amended by varying the width of the well and barrier and also the height of the VDQW. Our results can be used to study VDQW based nanoscale field effect transistor structures.  相似文献   
10.
We have used the condensation method to synthesize 2-acetyl-5-methylsemicarbazone ligand. Manganese(II) and Cobalt(II) complexes having formula [ML2]X2 were synthesized where M = Mn(II) and Co(II), L = ligand, X = Cl, CH3COO, NO3, ½SO42−. The characterization data suggests the octahedral geometry for all the synthesized complexes. Tridentate nature of the 2-acetyl-5-methylsemicarbazone ligand was revealed by IR studies. Molar conductance analysis suggested the electrolytic nature of the complexes. The theoretical study includes geometrical optimization, HOMO-LUMO energy gap, energetic parameters and dipole moment. These results also confirmed the tridentate nature of the ligand and the octahedral geometry of complexes. The molecular electrostatic potential (MEP) study suggested the reactive sites for an electrophilic or nucleophilic attack in the ligand. We tested the synthesized compounds for their antifungal and antibacterial action via well diffusion method and found that parent ligand after the coordination with the metal ion showed more effective inhibition against bacteria and fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号